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Abstract

Many real-world coordination tasks—such as environmental moni-
toring, traffic management, and underwater exploration—are best
modelled as multiagent problems with multiple, often conflicting
objectives. Achieving effective coordination in these settings re-
quires addressing two main challenges: 1) balancing multiple objec-
tives and 2) resolving the credit assignment problem to isolate each
agent’s contribution from team-level feedback. Existing multiagent
credit assignment methods collapse multi-objective reward vectors
into a single scalar—potentially overlooking nuanced trade-offs. In
this paper, we introduce the Multi-Objective Difference Evaluation
(Dpo) operator to assign agent-level credit without a priori scalari-
sation. Dpgo measures the change in hypervolume when an agent’s
policy is replaced by a counterfactual default, capturing how much
that policy contributes to each objective and to the Pareto front. We
embed Do into the popular NSGA-II algorithm to evolve a popu-
lation of joint policies with distinct trade-offs. Empirical results on
the Multi-Objective Beach Problem and the Multi-Objective Rover
Exploration domain show that our approach matches or surpasses
existing baselines, delivering up to a 33% performance improve-
ment.

CCS Concepts

« Computing methodologies — Cooperation and coordina-
tion; Multi-agent systems; Intelligent agents.

Keywords
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Assignment

1 Introduction

Many real-world tasks such as environment monitoring [10], ur-
ban traffic management [19], and underwater exploration [41] are
complex multiagent coordination problems. Learning to coordinate
becomes particularly difficult when these problems contain mul-
tiple, possibly even conflicting objectives [39]. For instance, in an
environmental monitoring task, these may include 1) evenly cover-
ing the environment, 2) performing focused monitoring of specific
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points of interest, while 3) minimising overall energy expenditure.
Success in these settings requires learning coordinated multiagent
joint policies that optimise multiple objectives at once.

There are two key challenges in complex multi-objective multia-
gent learning problems: 1) balancing multiple objectives to learn
rich trade-offs, and 2) discerning feedback for individual agents
from an all-encompassing team reward, i.e. the multiagent credit
assignment problem. The multiagent credit assignment problem
is particularly challenging in multi-objective domains, wherein
an agent’s impact must be measured across multiple objectives
simultaneously.

Many solutions for the multiagent credit assignment problem
have been developed for single-objective Multiagent Reinforcement
Learning (MARL) [4, 15, 29] and Cooperative Coevolution [1, 6, 8],
and have shown to significantly aid the learning process. In multi-
objective settings, these methods are extended via a priori weighted
scalarisation that collapses the multi-objective reward vector into a
single scalar value [26, 42].

A drawback to a priori scalarisation is that it imposes a fixed pref-
erence, and may overlook complex, non-linear trade-offs among the
objectives. This can severely limit scalarisation-based approaches
from fully capturing the solution space and learning the true Pareto
front [11, 21, 40]. Several Multi-Objective Evolutionary Algorithms
(MOEAS) [9, 14, 45] provide a scalarisation-free alternative to learn-
ing the Pareto front. However, their application in multiagent learn-
ing remains limited without addressing the multi-objective multia-
gent credit assignment problem.

In this work, we introduce the Multi-Objective Difference Eval-
uation (Dpgo) operator for estimating agent-level credit in multi-
objective evolutionary algorithms. Dj;o measures the change in
hypervolume when an agent’s policy is replaced by a counterfactual
default, effectively capturing how much that policy contributes to
the Pareto front [30]. This measure is then used as the agent’s credit
value.

Our key insight is that ‘contribution to the hypervolume’ is an
effective agent-level feedback to learn from, and allows MOEAs to
evolve a population of joint policies that expresses distinct trade-offs
among the objectives. Dyjp requires no a priori reward scalarisa-
tion!, which 1) enables learning without needing the expertise to

'While the hypervolume metric does produce a scalar value, it is not used here to
produce a singular scalar reward before learning. Instead, we apply it within an existing
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design complex scalarising functions, and 2) promotes an expansive
search of the objective space.

Our primary contribution in this paper is the Dyso operator. We
leverage the Dyso operator by minimally modifying the NSGA-
IT algorithm [14]. We then compare this modified NSGA-II with a
coevolutionary approach from the literature that combines NSGA-II
with Difference Evaluation for credit assignment, classical NSGA-II,
and modified NSGA-II without credit assignment. We match the
performance of existing baselines in the Multi-Objective Beach
Problem, and show a 33% increase in performance in the Multi-
Objective Rover Exploration Problem.

2 Background
2.1 Multi-Objective Optimisation

Many real-world problems are multi-objective, where improving
in one objective is detrimental to another (e.g., speed vs. safety
vs. comfort in autonomous vehicles [23]). Instead of a single best
solution, it is often preferred to develop a range of Pareto-optimal
solutions that provide different trade-offs across objectives.

A majority of the work in recent years falls into one of two
categories—methods that focus on 1) learning a Pareto front esti-
mate directly [9, 14, 20, 22, 45], and 2) optimising a single super
objective created by applying a scalarising or utility function over
all the objectives [3, 24, 26, 28]. For multiagent learning, agent-
specific utility functions are generally favoured [33]. However, col-
lapsing a multi-objective fitness vector into a scalar value risks
imposing sub-optimal preferences, particularly when objectives are
complexly interdependent [11, 21, 40]. Additionally, preferences
among objectives to design these utility functions may not exist
beforehand. Lastly, in critical applications, decision-makers may
prefer choosing from a range of Pareto-optimal solutions rather
than optimising predefined preferences. Thus, it is often desirable
to operate in the decision support [33] paradigm, which involves
learning an estimate of the whole Pareto front to provide decision-
making support, instead of optimising predefined utilities over the
objectives.

Multi-Objective Evolution. Many MOEAs, such as PAES [22], PESA-

I1[9], NPGA [20], SPEA2 [45] and NSGA-II [14], provide a scalarisation-

free approach to multi-objective learning when utilities are un-
known. Another advantage of using MOEAs (and evolutionary
methods in general) is their indifference to the frequency of the
availability of feedback within an episode. Any feedback is only
utilised at the end of an episode, in the form of the candidate so-
lution’s fitness, computed by simply aggregating whatever little
feedback the environment provides. This makes evolution espe-
cially effective in sparse reward settings, where the lack of dense
feedback makes extracting a gradient for gradient-based learning
challenging [36, 37]. Hence, we focus on population-based MOEAs,
and specifically, NSGA-II [14]. The NSGA-II algorithm remains
the most popular for problems with few objectives and serves as
the most suitable for comparison. In this paper, NSGA-II and its
operators will be a common recurrence.

scalarisation-free MOEA strictly for agent-level credit assignment, thus preserving
the benefits of scalarisation-free methods.
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2.2 Multiagent Systems and the Credit
Assignment Problem

One of the key problems in multiagent systems research is the
credit assignment problem, where the effect of an agent’s actions
on the team fitness must be determined. This quantified contri-
bution is then used as feedback for the agent, promoting positive,
team-oriented actions. Credit can be provided in several ways, in-
cluding as a reward in (deep) reinforcement learning [17, 29], or as
a local fitness to determine the selection probabilities of policies in
evolutionary algorithms [6, 7]. Credit assignment becomes impor-
tant when the team fitness is too general for individual agents to
efficiently learn impactful behaviours from.

Difference Evaluation. The Difference Evaluation operator (D) is
a state-of-the-art technique that addresses the credit assignment
problem by estimating the contribution of a single agent to a mul-
tiagent team’s performance [6, 15]. For an agent i, the Difference
Evaluation is defined as:

D; =G(z) - G(z- U ¢j), [34] (1)

where z is the joint-action of the system, G(z) is the global system
performance, z_j is the joint-action of the system with the action
of agent i removed, and c;j is a counterfactual action that agent
i’s action is replaced with. G(z—; U ¢;) gives an estimate of the
performance of a hypothetical system without the contribution of
agent i. The counterfactual term c; represents a default action with
no contribution to the system performance. This default action
comes intuitively in many problems, such as sticking to a starting
position indefinitely in an environment-exploration problem [30].

D has been successfully employed in evolving a multiagent joint
policy using Cooperative Coevolutionary Algorithms (CCEAs), pro-
viding local fitness evaluations to guide the policy evolution of each
individual agent [1, 6, 8]. In Multiagent Reinforcement Learning
(MARL) contexts, D is leveraged to shape highly targeted rewards
for each agent [4, 15].

Interestingly, D has been employed for multi-objective multia-
gent credit assignment in prior works [42, 43]. In the MARL ap-
proach of these works, each agent’s contribution to each objective is
estimated via D, then combined with a scalarising function, making
credit assignment contingent on predetermined objective prefer-
ences and placing the method within the scalarisation-based para-
digm. The authors of these works also propose a coevolutionary
approach that evolves each agent’s policies in separate subpopula-
tions, using NSGA-II on local fitnesses computed using D. As this
approach is scalarisation- and utility-free, it will serve as a baseline
to compare our work with.

3 Method

In this section we define the Dyso operator and describe its incor-
poration into NSGA-IL.
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3.1 The Multi-Objective Difference Evaluation
Operator

Evolutionary Algorithms (EAs) maintain a population of candidate
solutions, each representing a parametrised entity under optimisa-
tion. For multiagent applications, each candidate solution can en-
code a joint policy—a collection of single agent policies—evaluated
using a multi-objective fitness vector. However, using only the
fitness vector—which evaluates the entire team’s performance—
overlooks the quality of individual agent policies. Highly impact-
ful single-agent policies in underperforming joint policies may be
discarded, while low-impact ones in strong joint policies can sur-
vive, reducing evolutionary efficiency. This scenario exemplifies the
multi-objective multiagent credit assignment problem, which calls
to determine agent-level contributions to joint policy performance.

‘Joint policy performance’ should not only reflect the joint pol-
icy’s objective-wise performance, but also its contribution to the
Pareto front’s spread, and its uniqueness within the population.
Our key insight is that the hypervolume of a nondominated set nat-
urally captures these factors [18, 35, 44], and a single agent policy’s
contribution to the hypervolume is impactful agent-level credit.

We thus propose the Multi-Objective Difference Evaluation (Do)
operator. Dyjo replaces one agent’s trajectory (i.e. state-action pairs
collected from interactions with the environment) with a counter-
factual default-action trajectory and measures the resulting change
in hypervolume. Thus, Dyso isolates the single agent policy’s con-
tribution to its joint policy’s performance.

Notation and Definitions

e Let J be the nondominated set of joint policies.
e Each joint policy € J consists of k individual policies:

7t = (1, 72, -+ ., ).
e Each policy 7; generates a trajectory:
1 = (7).
o The joint trajectory generated by 7 is:
T=(11,72,...,T)-
o The set of joint trajectories corresponding to 7 is:
T ={r | vis generated by w € J} .
e Let H(7) denote the hypervolume of the set 7:
H(T") = hypervolume ({fitness(z) | T € 7}) .

Dmo Computation

We assess the impact of an individual policy by replacing its trajec-
tory with a counterfactual trajectory consisting of default actions.

(1) Counterfactual Trajectory Replacement
e For the policy 7; under consideration, define a default
policy d; that generates a default trajectory:
ci = 1(di).
e Construct the counterfactual joint trajectory by replac-
ing 7; with ¢;:
v = (T, T, iy Tik - -5 Th)-
(2) Modified Trajectory Set

Nondominated set

Figure 1: Graphical representation of the Dy;p computation
procedure. From a joint trajectory, an agent’s trajectory is
swapped with a counterfactual default, and the subsequent
change in hypervolume is assigned as the agent’s credit.

e Obtain the modified set by replacing = with 7/ in 7
7' = (T \{rh u{r'}.

(3) Dpmo Value Calculation
o Compute the Dy value to quantify the impact of the
individual policy 7;:

Dyio(mi, m, ) = H(T) — H(T). (2)

Figure 1 provides an intuitive visual of this Do computation. A
key requirement is that each objective must be of the same nature.
Either all must be maximisation objectives, or all must be minimisa-
tion. Assuming maximisation across all objectives, a positive Do
value implies that the hypervolume reduces when 7; is replaced by
a counterfactual c;. The higher the Dyo value for a policy, the more
impactful it can be considered, and the more likely should be its
preservation and proliferation in the evolution process. On the flip
side, Dp1o values are also useful for identifying poor-performing
single agent policies and actively discouraging their insidious prop-
agation over generations. Weeding out bad policies is as important
as preserving good ones, as it ‘frees’ up the corresponding agent
to explore other behaviours. In settings with easily accessible local
optima in team behaviour, this additional exploration is key for the
team to achieve globally optimal performance.

Algorithm 1 assign-DMO(J)

Require: Nondominated set of joint policies J°

1: Let 7 = {r | 7 is generated by m € J} » Joint trajectory set

2: for all joint policies 7 € 9 do

3: Let s contain the policy vector [y, 72, . . ., 7x]

4 Let 7 = {71, 1, ..., 74} be the joint trajectory s generates

5 foralli € |z| do > Note that |z| = |7]|
6: Let d; be the default policy for agent i
7
8
9

ci = 1(d;j) > Generate counterfactual trajectory
v« (t\ {r}) U{ci} > Replace trajectory
: T’ =T \{t}) u{r'} > Replace joint trajectory
10: m;.DmoValue «— H(T) — H(T) > Equation 2
11 end for
12: end for




3.2 Modifying Classical NSGA-II to Leverage
Policy-Level Credit

We present a minimally modified version of classical (real-coded)
NSGA-II that leverages Do values in the selection and crossover
operations to create the offspring set. We choose the NSGA-II algo-
rithm for its robustness and widespread adoption across a range
of applications [16, 27]. We modify classical NSGA-II to be able to
utilise fitness values local to each policy in the joint policies being
evolved.

We introduce a new step, assign-DMO, detailed in Algorithm 1,
to compute and assign policy-level credit. Once these policy-level
credit values have been obtained, we modify the make-new-pop
procedure of NSGA-II to incorporate Dygo credit value in parent
selection and crossover. Unlike classical NSGA-II, where two com-
plete parent joint policies would be selected via binary tournaments
and crossed over using the Simulated Binary Crossover (SBX) [13],
we conduct the binary tournament selection and subsequent SBX
crossover per single agent policy rather than per joint policy. This
produces two offspring solutions, and this process is repeated until
the offspring set is full. Specifically, for each policy slot, the tour-
nament compares the Dyso credit value of candidate parent single
policies and selects two parents. We then apply SBX on this pair
of single policies, repeating for all policy indices. One pass of this
procedure yields two complete offspring solutions. We then repeat
this until the offspring set is full.

By substituting whole-individual selection with policy-level se-
lection, we minimally extend NSGA-II so that local fitnesses, like
Dy values, guide the offspring creation process. As each con-
stituent policy of an offspring solution is produced from two parent
single policies, for an offspring solution of size K, there may be a
maximum of 2K parent solutions that are used to create it. We for-
mally define this modified make-new-pop procedure in Algorithm
2.

Algorithm 2 make-new-pop(P)

Require: Parent set P of joint policies
Ensure: Offspring set Q
Q<0 > Initialise empty offspring population
2: Let N be the desired size of the offspring set
3: Let K be the number of single policies in each joint policy
4: while |Q| < N do
5 Toffspringl = {01, 02, ..., Ok } » Initialise blank joint policy

6: Toffspringz = {01, 02, . . ., Ok } » Initialise blank joint policy
7: for k = 1to K do

8: Tparents < {7[k] | r € P} > Candidate parents
9: Tp1, Tp2 < select(parents) > Using Dpo values
10: To1, Moz «— SBX(7p1, mp2) > Crossover
1 Toffspring1 [K] < o1 > k™ policy of offspring 1
12: Toffspringz [K] < 7o2 > kth policy of offspring 2
13: end for > Two offsprings have been created
14: Toffspringl < Mutate(Toffspring1)

15: T offspring2 < mUtate(noffspringz)

16: Qe<Qu {”offspringl) ”offspringz}
17: end while
18: return Q
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4 Testing Domains

In this section, we describe two multiagent coordination problems
that require a team of agents to balance multiple objectives and
provide rich trade-offs among them. Learning is complicated due
to only the team reward being available, which necessitates agents
to receive more accurate, personalised feedback to be able to learn
coordination efficiently. Thus, not only do these domains test the
ability of learning methods to provide Pareto-optimal trade-offs,
but also investigate the value of credit assignment in efficiently
learning coordination in complex multi-objective problems.

4.1 The Multi-Objective Beach Problem (Beach)
Domain

The Beach domain is a multi-objective partially observable Stochas-
tic Game that has been developed as a benchmark problem domain
for multiagent learning algorithms [25]. It is an extension of the
Multi-Objective Bar Problem [42], and the El Farol Bar Problem [2].

Agents (tourists) are distributed across several sections of a
beach and must decide whether to stay in their current section
or move to an adjacent one; the actions being move_left, stay,
and move_right. Each agent is only provided knowledge of the
beach section it starts from. The goal is to optimise two conflicting
objectives: (1) capacity, which is maximised when the number of
agents in a section matches its ideal capacity, and (2) mixture, which
is maximised when there is an equal number of the two agent types
(e.g., introverts and extroverts) in each section.

We now define the two objectives of this problem. The global
capacity objective is to maximise G¢qp, the sum of the local capacity
rewards over all sections:

Geap = Z Lcap(s)
seS
where the local capacity reward, Leqp (s), for a given section s is
calculated as:
Xs
Lcap (s) =xse ¥
Here, x is the number of agents in section s and ¥ is the ideal
capacity of that section.
The global mixture objective is to maximise Gpix, the sum of
the local mixture rewards over all sections:

Gmix = Z Limnix(s)
seS
where the local mixture reward, Ly,;x (s), for a given section is:
min(|ls|, |Es|)
(ls] + |Es]) x IS
Here, |Is| and |Es| are the number of agents of each type in section

s, and |S] is the total number of sections.
Thus, the global reward vector G for an episode is given by:
G= [Gcap> Gmix]

There are two important features of the rewards in this domain.
First, the environment only returns the net global reward vector
to each agent. Thus, each agent must learn individual actions from
the multi-objective team reward vector. Second, this domain yields

a non-zero reward on each objective for every possible distribution
of agents across beach sections. Thus, the rewards in this domain

Linix(s) =
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are dense, and even slight changes in the distribution of agents
causes corresponding changes in the rewards. The tight correlation
between the actions agents take and the feedback they receive
weakens the need for sophisticated multiagent credit assignment.
However, we still consider experiments in this domain necessary
for benchmarking.

4.2 The Multi-Objective Rover Exploration
Problem (Rover) Domain

The Rover domain is a multi-objective extension of a classic mul-
tiagent coordination problem [5, 6, 34]. It serves as a proxy for
real-world tasks like environmental monitoring [31], underwater
exploration [41], and distributed lunar sensing [12]. Due to partial
observability, this problem may be modelled as a Multi-Objective
Partially Observable Markov Decision Process.

A team of homogeneous rovers operates on a 2D plane to ob-
serve Points of Interest (POIs), each of which provides rewards on
one or more objectives. Agents must coordinate navigation and
learn the trade-offs among objectives by prioritising different POIs.
Each rover’s observation state averages exp(—d) measurements for
nearby agents and POIs in distinct channels (one for agents and
separate ones for each objective), subdivided into multiple sectors
to enable more refined decision-making. Given these observations,
each agent outputs navigational actions (dx, dy), subject to a maxi-
mum step length |L|.

Some POIs have coupling requirements, requiring simultane-
ous observation by multiple rovers to yield any reward. Thus, the
learning challenges are threefold:

e Navigating to POls,

o Coordinating to satisfy coupling constraints,

e Developing a suite of behaviours that provide distinct trade-
offs across objectives.

Rewards are sparse and gained only when a POI’s coupling re-
quirement is fulfilled. Variations in POI objectives, coupling con-
straints, reward magnitudes, and required proximity render the
Rover domain a challenging multi-objective multiagent coordina-
tion problem.

5 Experiments
5.1 The Algorithms

To study the impact of credit assignment in Do, we compare the
Dpjo-incorporated NSGA-II algorithm (Section 3.2) (Dso hereon)
with three baselines.

(1) Classical NSGA-II (NSGAII): The unmodified real-coded
version of NSGA-II as originally published [14].

(2) Decentralised NSGA-II with Credit Assignment (NS-
GAII+CA): A coevolutionary approach where each agent’s
policies are evolved in separate subpopulations [43]. It uses
D to derive a multi-objective credit vector for each policy
from the multi-objective team reward vector.

(3) NSGA-II with Policy-Level Selection and Crossover
(NSGAII+PLSC): An ablated baseline that retains the single-
agent policy structure of Dysp-incorporated NSGA-II but

does not use policy-level credit. Instead, each parent single-
agent policy is selected based on the Pareto dominance and
crowding distance of the joint policy it belongs to.

In each experiment, policies are neural networks with param-
eters randomly initialized in [—1, 1]. For a population of size N,
we retain the top N /2 solutions each generation and create N/2
offsprings. We mutate each offspring by applying Gaussian noise
(mean= 0, standard deviation= 0.5) to each network parameter
with probability ¢ = 0.75. Crossover is performed using the SBX
operator with a distribution index 1 = 15. For counterfactual re-
placements in Dy;o and NSGAII+CA, we use a null trajectory that
removes an agent entirely from the joint trajectory.

5.2 Beach Domain Experiments

We set up two instances of the problem: Beachsy and Beachjo,
with 50 and 100 agents respectively. Each instance has five beach
sections. Each agent makes one move—move_left, move_right, or
stay. An agent receives the ID of the section it occupies as state
input in a one-hot encoded format. In each instance, 70% of the
agents are of Type I, while 30% are of Type E. For each instance,
we assign section 2 as the starting section for half of the Type
I, and half of the Type E agents. For the remaining agents of each
type, we assign the starting section as section 42. For Beachsy,
we set each beach section’s capacity ¥ = 3 and for Beachjgg, we
set the capacity i = 5.

Pareto-optimal solutions in this domain are attained when most
agents crowd one beach section. In each remaining beach section,
agents must either occupy the section to match its capacity exactly,
or ensure that equal number of both agent types occupy the section.
Due to the section capacities being odd values, at best, only one
of the two objectives may be maximised from each beach section.
This predicament is exacerbated by the imbalance in the proportion
of the two agent types in the system. Thus, the goal is to learn a
suite of joint policies that express all possible Pareto-optimal trade-
offs by attaining the various optimal distributions of agents across
beach sections.

We test each method in each instance with a population size N =
100 and ten statistical runs with random seed A € {2024 - - - 2033}.

5.3 Rover Domain Experiments

In the Rover domain, we set up three experiments that each test
multiagent coordination, and the impact of multiagent credit as-
signment on learning. In each set-up, the map is of size 20 x 20,
agents have a maximum step length of 1 unit, agents can observe
features in the map (like POIs and other agents) up to 5 units away,
and the length of the episode is set at 25 timesteps. For Asymmetric
Exploration, we set the population size N = 400, for Local Opti-
mum, we set N = 200, and for Multi-Trap, N = 300. We perform
five trials, with random seed A € {2024, 2025, - - - 2028}.

5.3.1 Asymmetric Exploration. In this setup, a team of eight
agents starts at the map’s geometric centre. Eight identical POIs,
each with coupling=2, are uniformly placed around the centre and
grant a single +2 reward when simultaneously observed by two
agents (coupling=2). Once observed, these POIs do not yield further

2Starting beach sections are assigned from beach sections 1-5.
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Figure 2: Environment maps for (a) Local Optimum (With
Trap), and (b) Multi-Trap Rover domain problems. Each cen-
tral POI (coupling=3) rewards on a single, distinct objective,
while each trap POI (coupling=1) rewards on both objectives.

rewards, and maximising this reward is the first objective. Four
additional coupling=2 POIs in each corner offer repeating +0.25
rewards, constituting the second objective. We run two configura-
tions: one with the repeating POIs always active, and another where
they are ephemeral, with each ephemeral POI having a distinct,
five-timestep observation window. In these two configurations, we
test the general-purpose robustness of learning methods. Team
synergy is key, yet there are various strategies to maximise rewards
and trade-offs. Lastly, we test how various methods fare with an
increase in the problem difficulty, as introduced by the ephemeral
POls.

5.3.2 Local Optimum. We place four agents in the four corners
of the map, with two adjacent radius=2 POIs® at the centre, each
with coupling=3. Maximising the repeating +1 rewards from these
two POIs forms the two objectives, but since they do not overlap,
the team can observe only one POI at a time. Thus, agents must co-
ordinate both navigation and the decision of which POI to observe,
and for how long. Achieving rich trade-offs across the objectives
requires tight coordination to balance and fully exploit POlIs.

To further challenge the agents, we introduce a “trap” POI (cou-
pling=1) that provides repeating rewards of +0.25 on both objectives.
Low coupling makes this POI easier to discover, creating a local
optimum. Pareto-optimal solutions are found when only one agent
exploits the trap while the other three focus on the higher-value
central POIs, balancing the two objectives. We run two configura-
tions of this local optimum problem—one with the trap POI and
one without it—to test whether learning methods can avoid this
local optimum in favour of the global optimum. Figure 2a provides
a visualisation of the map for this problem.

5.3.3 Multi-Trap. As a special test, we run a configuration similar
to Local Optimum, but with three traps, each of coupling=1. We test
this map with six agents, with three agents starting from either ends
of the map. To preserve the challenge of discovering the central POIs

3The ‘radius’ is the maximum distance from which a POI may be observed by an agent
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Figure 3: Mean hypervolume comparison in the (a) Beachs
and (b) Beachjyp domains. The rich feedback from the en-
vironment weakens the need for sophisticated multiagent
credit assignment techniques and we see comparable perfor-
mance across methods.

with an increase in agents, we shrink the central POIs to radius=1.
Figure 2b visualises the map configuration for this problem.

6 Results and Analysis

We now present and discuss our findings from the experiments
described in Section 5. For each mean hypervolume chart, we plot
the mean of the hypervolume attained over the respective trials,
with the Standard Error of Mean (SEM) shaded in a lighter colour.

6.1 Beach Domain

Figure 3 compares the hypervolume attained by each method in the
Beachsy (Figure 3a) and Beachgp (Figure 3b) problems. The hyper-
volume values attained are comparable across methods, with no dis-
cernible difference among Dyso, NSGAII+CA, and NSGAII+PLSC
on either problems. NSGAII is also competetive in the Beachsg
problem. However, we notice a small dip in NSGAII in Beachjgo,
with NSGAII's final mean hypervolume being ~ 2% lower than that
of other methods.

With the feedback in the Beach domain being dense, even small
changes in a single agent’s decision causes a corresponding shift in
the team reward. This correlation means that high-impact individ-
ual policies naturally proliferate even through naive selection and
crossover based solely on the team fitness—explaining compara-
ble performance across methods. Meanwhile, explicitly addressing
credit assignment—as in Dyso and NSGAIl+CA—introduces no ad-
verse effects.

6.2 Rover Domain

6.2.1 Asymmetric Exploration. Figure 4 shows the mean hy-
pervolume achieved by each method in the Asymmetric Explo-
ration problem, both without and with ephemeral POIs. We see a
clear advantage in selecting and crossing over single agent policies
rather than complete joint policies, as evidenced by the higher per-
formance of Dy;o and NSGAII+PLSC in Figures 4a and 4b. Dyso
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Figure 4: Mean hypervolume comparison in the Asymmetric
Exploration problem in the Rover domain with (a) static
and (b) ephemeral POIs. An increase in difficulty caused by
ephemeral POIs reveals the value of accurate agent-level
feedback for learning efficiently.

outperforms NSGAII+PLSC by ~ 15% in the ephemeral-POI ver-
sion (Figure 4b), due entirely to accurate agent-level credit. As the
problem grows more difficult, this informative feedback becomes
increasingly critical.

We would also like to highlight a critical shortcoming of NSGA-
II+CA, which uses a CCEA that randomly selects policies from each
subpopulation to form a multiagent team policy to evaluate. This
prevents single agent policies from consistently pairing with the
same teammates from other subpopulations and thus inhibits com-
plementary behaviours. This is a major hindrance to performing
well in settings such as the Rover domain, which require agents
to tightly coordinate to handle coupling constraints. Additionally,
NSGA-II’s focus on generating diverse solutions contradicts the
coevolutionary need for subpopulations to converge, further un-
dermining performance. These issues explain NSGA-II+CA’s poor
results in the Rover domain.

6.2.2 Local Optimum. Figure 5 compares the mean hypervolume
each method attains in the Local Optimum problem without and
with the trap POL Overcoming a local optimum is a classic case
of requiring the contribution of each agent to be measured clearly,
so that underperforming agents can be identified and pushed to
explore other useful behaviours [32, 38]. This is clearly shown in
Figure 5b, where Do shines in allowing the agents to handle the
trap POI and learn higher-hypervolume Pareto fronts. Dyjo’s mean
hypervolume is ~ 20% higher than that of NSGAII+PLSC, and ~ 33%
higher than that of NSGAIL In Figure 6, we compare the Pareto
fronts of performance on each objective attained by each method.
Specifically, we compare Pareto fronts at the same percentile (by
hypervolume) across the various trials of each method. As evident,
in most trials, Dyso produces dominant, yet diverse solutions that
offer rich and desirable trade-offs among objectives.
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Figure 5: Mean hypervolume comparison in the Local Op-
timum problem in the Rover domain (a) without the trap
POI, and (b) with the trap POI Overcoming locally optimal
behaviour is encouraged with accurate credit assignment,
which ‘calls out’ single agent policies that do not contribute
much to the team reward—compelling them to explore other
behaviours instead.

6.2.3 Multi-Trap. Our next comparison, shown in Figure 7, fo-
cuses on the mean hypervolume of the fronts learned in the Multi-
Trap problem. The three trap POIs here present an exceptional
challenge in discovering the high-reward central POIs. Dyso is the
first to surmount the local minima, as evidenced by a jump in mean
hypervolume at around 20,000 generations. Once agents overcome
the trap and locate higher-reward POIs, Dyso isolates and reinforces
the high-performing policies, further improving globally benefi-
cial behaviours. Accurate credit assignment thus proves critical for
both—discovering rewarding strategies, and refining them after-
wards. This also explains the steady climb in mean hypervolume
Dyo sustains after overcoming the trap POIs in Figure 7.

As a final comparison, in Figure 8, we sample the median Pareto-
fronts learnt by Dyso and NSGAII+PLSC, and plot the trajectories
that demonstrated the most balanced trade-offs. We clearly see
that Dyo is able to optimally exploit both—the trap POIs, and the
central POIs while NSGAII+PLSC fails to surmount the trap POIs.
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liably learns dominant fronts that also consistently provide
more trade-offs across objectives.
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Dpo is the first method to learn to reliably overcome the
traps, as seen by the mean hypervolume jump starting at
roughly 20,000 generations.
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7 Conclusion and Future Work

We presented the Dyso operator, a solution to the multiagent credit
assignment problem for multi-objective coordination. We formally
described D0, and then leveraged it in an NSGAII-like algorithm.
Our results show competitive performance compared to baselines
in the dense-reward Multi-Objective Beach Problem Domain, and
Dyjo outperforming the existing baselines by up to 33% in the
sparse-reward Multi-Objective Rover Exploration Problem Domain.
Dyyo is able to consistently provide rich and dominant trade-offs
without requiring any a priori scalarisation of the objectives. Dyro
fits easily into existing algorithms, making it a powerful yet flexible
tool to augment multi-objective multiagent learning.

We now present some limitations of our approach and some
future work. Dyso relies on computing the hypervolume to derive
agent-level credit. This subjects it to the two biggest drawbacks of
using the hypervolume indicator—that hypervolume is NP-hard to
calculate exactly, and that this computation scales exponentially
in the number of objectives. For few-objective problems, however,
this indicator works well, as supported by our results. For many-
objective problems, an effective approximation, or replacement for
the hypervolume indicator would be necessary. Thus, as future
work, we would like to explore other multi-objective indicators that
can replace the hypervolume computation. One potential substitute
is the nondominated rank of a solution, and to measure the effect
of single agent policies on this rank with Dy;o’s counterfactual
replacements.
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